
D e p t o f C S E , M B I T S Page 1

FILE ALLOCATION METHODS

 The main problem is how to allocate space to files so that

disk space is utilized effectively and files can be accessed

quickly.

 Three major methods of allocating disk space are

1. Contiguous Allocation

2. Linked Allocation

3. Indexed Allocation

Contiguous Allocation

 Contiguous allocation requires that each file occupy a set of

contiguous blocks on the disk.

 Disk addresses define a linear ordering on the disk.

 Accessing block b + 1 after block b normally requires no

head movement.

 When head movement is needed (from the last sector of one

cylinder to the first sector of the next cylinder), the head need

only move from one track to the next.

 Thus, the number of disk seeks required for accessing

contiguously allocated files is minimal.

 Contiguous allocation of a file is defined by the disk address

of the first block and length.

 If the file is n blocks long and starts at location b, then it

occupies blocks b, b + 1, b + 2, ..., b + n − 1.

D e p t o f C S E , M B I T S Page 2

 Accessing a file that has been allocated contiguously is easy.

 For sequential access, the file system remembers the disk

address of the last block referenced and reads the next block.

 For direct access to block i of a file that starts at block b, we

can immediately access block b + i.

 Thus, both sequential and direct access can be supported by

contiguous allocation.

Drawbacks:

 One difficulty is finding space for a new file. It suffers from

dynamic storage-allocation problem which involves how to

satisfy a request of size n from a list of free holes.

D e p t o f C S E , M B I T S Page 3

 First fit and best fit are the most common strategies used to

select a free hole from the set of available holes. Simulations

have shown that both first fit and best fit are more efficient

than worst fit in terms of both time and storage utilization.

 Neither first fit nor best fit is clearly best in terms of storage

utilization, but first fit is generally faster.

 All these algorithms suffer from the problem of external

fragmentation. As files are allocated and deleted, the free

disk space is broken into little pieces. External fragmentation

exists whenever free space is broken into chunks. It becomes

a problem when the largest contiguous chunk is insufficient

for a request; storage is fragmented into a number of holes,

none of which is large enough to store the data.

 Depending on the total amount of disk storage and the

average file size, external fragmentation may be a minor or a

major problem.

 Solution is compaction, which compact all free space into

one contiguous space, solving the fragmentation problem.

 The cost of this compaction is time and the cost can be

particularly high for large hard disks. Compacting these disks

may take hours and may be necessary on a weekly basis.

 Some systems require that this function be done off-line,

with the file system un-mounted. During this down time,

normal system operation generally cannot be permitted.

D e p t o f C S E , M B I T S Page 4

 Most modern systems that need defragmentation can perform

it on-line during normal system operations, but the

performance penalty can be substantial.

 Another problem with contiguous allocation is determining

how much space is needed for a file. When the file is created,

the total amount of space it will need must be found and

allocated.

 How does the creator (program or person) know the size of

the file to be created? In some cases, this determination may

be fairly simple. In general, however, the size of an output

file may be difficult to estimate.

 If we allocate too little space to a file, we may find that the

file cannot be extended. Especially with a best-fit allocation

strategy, the space on both sides of the file may be in use.

Hence, we cannot make the file larger in place.

 Two possibilities then exist. First, the user program can be

terminated, with an appropriate error message. The user must

then allocate more space and run the program again. These

repeated runs may be costly. To prevent them, the user will

normally overestimate the amount of space needed, resulting

in considerable wasted space.

 The other possibility is to find a larger hole, copy the

contents of the file to the new space, and release the previous

space. This series of actions can be repeated as long as space

exists, although it can be time consuming. The user need

never be informed explicitly about what is happening,

D e p t o f C S E , M B I T S Page 5

however; the system continues despite the problem, although

more and more slowly.

 Even if the total amount of space needed for a file is known

in advance, pre-allocation may be inefficient. A file that will

grow slowly over a long period (months or years) must be

allocated enough space for its final size, even though much of

that space will be unused for a long time. The file therefore

has a large amount of internal fragmentation.

 To minimize these drawbacks, some OS use a modified

contiguous-allocation scheme. Here, a contiguous chunk of

space is allocated initially. Then, if that amount proves not to

be large enough, another chunk of contiguous space, known

as an extent, is added.

 The location of a file’s blocks is then recorded as a location

and a block count, plus a link to the first block of the next

extent.

 Internal fragmentation can still be a problem if the extents are

too large, and external fragmentation can become a problem

as extents of varying sizes are allocated and deallocated.

Linked Allocation

 Linked allocation solves all problems of contiguous

allocation.

 With linked allocation, each file is a linked list of disk

blocks; the disk blocks may be scattered anywhere on the

disk.

D e p t o f C S E , M B I T S Page 6

 The directory contains a pointer to the first and last blocks of

the file.

 Each block contains a pointer to the next block. If each block

is 512 bytes in size, and the pointer requires 4 bytes, then the

user sees blocks of 508 bytes.

 To create a new file, we simply create a new entry in the

directory. The first pointer is initialized to null to signify an

empty file. The size field is also set to 0.

 A write to the file causes the free-space management system

to find a free block, and this new block is written to and is

linked to the end of the file.

 To read a file, we simply read blocks by following the

pointers from block to block.

D e p t o f C S E , M B I T S Page 7

 There is no external fragmentation with linked allocation, and

any free block on the free-space list can be used to satisfy a

request.

 The size of a file need not be declared when the file is

created. A file can continue to grow as long as free blocks are

available.

 Consequently, it is never necessary to compact disk space.

Drawbacks

 The major problem is that it can be used effectively only for

sequential-access files and not suitable for direct access

files.

 To find the ith block of a file, we must start at the beginning

of that file and follow the pointers until we get to the ith

block.

 Each access to a pointer requires a disk read, and some

require a disk seek. Consequently, it is inefficient to support

a direct-access capability for linked-allocation files.

 Another disadvantage is the space required for the

pointers.

 If a pointer requires 4 bytes out of a 512-byte block, then

0.78 percent of the disk is being used for pointers, rather than

for information.

 Each file requires slightly more space than it would

otherwise. The usual solution to this problem is to collect

D e p t o f C S E , M B I T S Page 8

blocks into multiples, called clusters, and to allocate clusters

rather than blocks.

 For instance, the file system may define a cluster as four

blocks and operate on the disk only in cluster units.

 Pointers then use a much smaller percentage of the file’s disk

space.

 It may increase in internal fragmentation, because more space

is wasted when a cluster is partially full

 Clusters can be used to improve the disk-access time for

many other algorithms as well, so they are used in most file

systems.

 Yet another problem of linked allocation is reliability. Recall

that the files are linked together by pointers scattered all over

the disk, and consider what would happen if a pointer were

lost or damaged.

 A bug in the OS software or a disk hardware failure might

result in picking up the wrong pointer.

 This error could in turn result in linking into the free-space

list or into another file.

 One partial solution is to use doubly linked lists, and another

is to store the file name and relative block number in each

block.

 However, these schemes require even more overhead for

each file.

D e p t o f C S E , M B I T S Page 9

 An important variation on linked allocation is the use of a

file-allocation table (FAT). This simple but efficient method

of disk-space allocation was used by the MS-DOS.

 A section of disk at the beginning of each volume is set aside

to contain the table.

 The table has one entry for each disk block and is indexed by

block number.

 The FAT is used in much the same way as a linked list. The

directory entry contains the block number of the first block of

the file.

 The table entry indexed by that block number contains the

block number of the next block in the file. This chain

continues until it reaches the last block, which has a special

end-of-file value as the table entry.

D e p t o f C S E , M B I T S Page 10

Indexed Allocation

 Linked allocation cannot support efficient direct access,

since the pointers to the blocks are scattered with the

blocks themselves all over the disk and must be retrieved

in order.

 Indexed allocation solves this problem by bringing all the

pointers together into one location: the index block.

 Each file has its own index block, which is an array of

disk-block addresses.

D e p t o f C S E , M B I T S Page 11

 The ith entry in the index block points to the ith block of

the file.

 The directory contains the address of the index block. To

find and read the ith block, we use the pointer in the ith

index-block entry.

 This scheme is similar to the paging scheme

 Indexed allocation supports direct access, without suffering

from external fragmentation, because any free block on the

disk can satisfy a request for more space.

 Indexed allocation does suffer from wasted space,

however.

D e p t o f C S E , M B I T S Page 12

 The pointer overhead of the index block is generally

greater than the pointer overhead of linked allocation.

 Consider a common case in which we have a file of only

one or two blocks. With linked allocation, we lose the

space of only one pointer per block. With indexed

allocation, an entire index block must be allocated, even if

only one or two pointers will be non-null.

 Every file must have an index block, so we want the index

block to be as small as possible. If the index block is too

small, however, it will not be able to hold enough pointers

for a large file, and a mechanism will have to be available

to deal with this issue.

 Mechanisms for this purpose include the following:

1. Linked Scheme

2. Multi-level index

3. Combined Scheme

Linked scheme

 An index block is normally one disk block. It can be read

and written directly by itself.

 To allow for large files, we can link together several index

blocks.

 For example, an index block might contain a small header

giving the name of the file and a set of the first 100 disk-

block addresses. The next address (the last word in the

D e p t o f C S E , M B I T S Page 13

index block) is null (for a small file) or is a pointer to

another index block (for a large file).

Multilevel index

 A variant of linked representation uses a first-level index

block to point to a set of second-level index blocks, which

in turn point to the file blocks.

 To access a block, OS uses the first-level index to find a

second-level index block and then uses that block to find

the desired data block.

 This approach could be continued to a third or fourth level,

depending on the desired maximum file size

Combined scheme

 Used in UNIX-based file systems

 It keeps the first 15 pointers of the index block in the file’s

inode. The first 12 of these pointers point to direct blocks;

that is, they contain addresses of blocks that contain data

of the file.

 Thus, the data for small files (of no more than 12 blocks)

do not need a separate index block.

 The next three pointers point to indirect blocks. The first

points to a single indirect block, which is an index block

containing not data but the addresses of blocks that do

contain data. The second points to a double indirect

block, which contains the address of a block that contains

the addresses of blocks that contain pointers to the actual

D e p t o f C S E , M B I T S Page 14

data blocks. The last pointer contains the address of a

triple indirect block.

Drawback

 Indexed allocation is more complex.

 If the index block is already in memory, then the access

can be made directly. However, keeping the index block in

memory requires considerable space.

 If this memory space is not available, then we may have to

read first the index block and then the desired data block.

 Some systems combine contiguous allocation with

indexed allocation by using contiguous allocation for

D e p t o f C S E , M B I T S Page 15

small files (up to three or four blocks) and automatically

switching to an indexed allocation if the file grows large.

 Since most files are small, and contiguous allocation is

efficient for small files, average performance can be quite

good.

STORAGE MANAGEMENT

MAGNETIC DISKS

 Magnetic disks provide the bulk of secondary storage for

modern computer systems. Conceptually, disks are relatively

simple.

 Each disk platter has a flat circular shape, like a CD.

Common platter diameters range from 1.8 to 3.5 inches. The

two surfaces of a platter are covered with a magnetic

material. We store information by recording it magnetically

on the platters.

D e p t o f C S E , M B I T S Page 16

 A read–write head “flies” just above each surface of every

platter. The heads are attached to a disk arm that moves all

the heads as a unit. The surface of a platter is logically

divided into circular tracks, which are subdivided into

sectors. The set of tracks that are at one arm position makes

up a cylinder.

 There may be thousands of concentric cylinders in a disk

drive, and each track may contain hundreds of sectors. The

storage capacity of common disk drives is measured in

gigabytes.

 When the disk is in use, a drive motor spins it at high speed.

Most drives rotate 60 to 250 times per second, specified in

D e p t o f C S E , M B I T S Page 17

terms of rotations per minute (RPM). Common drives spin at

5400, 7200, 10000, and 15000 RPM.

 Disk speed has two parts.

 The transfer rate is the rate at which data flow

between the drive and the computer.

 The positioning time, or random-access time,

consists of again two parts:

 The time necessary to move the disk arm to the

desired cylinder, called the seek time

 The time necessary for the desired sector to rotate

to the disk head, called the rotational latency.

 Typical disks can transfer several megabytes of data per

second, and they have seek times and rotational latencies of

several milliseconds.

 Because the disk head flies on an extremely thin cushion of

air (measured in microns), there is a danger that the head will

make contact with the disk surface

 Although the disk platters are coated with a thin protective

layer, the head will sometimes damage the magnetic surface.

This accident is called a head crash. A head crash normally

cannot be repaired; the entire disk must be replaced.

 A disk can be removable, allowing different disks to be

mounted as needed. Removable magnetic disks generally

consist of one platter, held in a plastic case to prevent

damage while not in the disk drive.

D e p t o f C S E , M B I T S Page 18

 Other forms of removable disks include CDs, DVDs, and

Blu-ray discs as well as removable flash-memory devices

known as flash drives (which are a type of solid-state drive).

 A disk drive is attached to a computer by a set of wires called

an I/O bus. Several kinds of buses are available, including

advanced technology attachment (ATA), serial ATA

(SATA), universal serial bus (USB), and fibre channel

(FC).

 The data transfers on a bus are carried out by special

electronic processors called controllers. The host controller

is the controller at the computer end of the bus. A disk

controller is built into each disk drive.

 To perform a disk I/O operation, the computer places a

command into the host controller. The host controller then

sends the command via messages to the disk controller, and

the disk controller operates the disk-drive hardware to carry

out the command.

 Disk controllers usually have a built-in cache. Data transfer

at the disk drive happens between the cache and the disk

surface, and data transfer to the host, at fast electronic speeds,

occurs between the cache and the host controller.

SOLID STATE DISKS (SSD)

 SSD is non-volatile memory that is used like a hard drive.

There are many variations of this technology, from DRAM

D e p t o f C S E , M B I T S Page 19

with a battery to allow it to maintain its state in a power

failure through flash-memory technologies

 SSDs have the same characteristics as traditional hard disks

but can be more reliable because they have no moving parts

and faster because they have no seek time or latency. In

addition, they consume less power.

 However, they are more expensive per megabyte than

traditional hard disks, have less capacity than the larger hard

disks, and may have shorter life spans than hard disks, so

their uses are somewhat limited.

 One use for SSDs is in storage arrays, where they hold file-

system metadata that require high performance.

 SSDs are also used in some laptop computers to make them

smaller, faster, and more energy-efficient. Because SSDs can

be much faster than magnetic disk drives.

 Some SSDs are designed to connect directly to the system

bus.

 Some systems use SSD as a direct replacement for disk

drives, while others use them as a new cache tier, moving

data between magnetic disks, SSDs, and memory to optimize

performance.

DISK STRUCTURE

 Modern magnetic disk drives are addressed as large one-

dimensional arrays of logical blocks, where the logical block

is the smallest unit of transfer.

D e p t o f C S E , M B I T S Page 20

 The one-dimensional array of logical blocks is mapped onto

the sectors of the disk sequentially. Sector 0 is the first sector

of the first track on the outermost cylinder. The mapping

proceeds in order through that track, then through the rest of

the tracks in that cylinder, and then through the rest of the

cylinders from outermost to innermost.

 Converting a logical block number into an old-style disk

address consists of a cylinder number, a track number within

that cylinder, and a sector number within that track.

 In practice, it is difficult to perform this translation, for two

reasons.

 Most disks have some defective sectors, but the

mapping hides this by substituting spare sectors from

elsewhere on the disk.

 The number of sectors per track is not a constant on

some drives.

 Let’s look more closely at the second reason.

 On media that use constant linear velocity (CLV), the

density of bits per track is uniform.

 The farther a track is from the center of the disk, the greater

its length, so the more sectors it can hold. As we move from

outer zones to inner zones, the number of sectors per track

decreases. Tracks in the outermost zone typically hold 40

percent more sectors than do tracks in the innermost zone.

The drive increases its rotation speed as the head moves from

the outer to the inner tracks to keep the same rate of data

D e p t o f C S E , M B I T S Page 21

moving under the head. This method is used in CD-ROM and

DVD-ROM drives.

 Alternatively, the disk rotation speed can stay constant; in

this case, the density of bits decreases from inner tracks to

outer tracks to keep the data rate constant. This method is

used in hard disks and is known as constant angular

velocity (CAV).

 The number of sectors per track has been increasing as disk

technology improves, and the outer zone of a disk usually has

several hundred sectors per track.

 Similarly, the number of cylinders per disk has been

increasing; large disks have tens of thousands of cylinders.

